The five-membered rings in each molecule are slightly different in conformation. In cation 1 the thiazolidine ring adopts a flattened envelope conformation with C (12) 0.054 (8) \AA out of the four-atom plane while the dihydrothiazolyl ring has a twist conformation with $\mathrm{C}(15)$ and $\mathrm{C}(16)$ deviating by -0.157 (9) and 0.054 (8) \AA from the $\mathrm{S}(13) \mathrm{C}(14)$ $\mathrm{N}(12)$ plane. In cation 2 both five-membered rings have flattened pseudo half-chair conformations (Table 3). The torsion angles, $-1.0(6)^{\circ}$ for $\mathrm{C}(13)-\mathrm{N}(11)-$ $\mathrm{C}(14)-\mathrm{N}(12),-2.6(5)^{\circ}$ for $\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(14)-$ $\mathrm{S}(13)$ and $0.8(7)^{\circ}$ for $\mathrm{C}(23)-\mathrm{N}(21)-\mathrm{C}(24)-\mathrm{N}(22)$, 1.5 (6) ${ }^{\circ}$ for $\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{C}(24)-\mathrm{S}(23)$, indicate that these fragments are essentially coplanar.

The orientations of the heterocyclic rings around the inter-ring $\mathbf{C}-\mathrm{N}$ bonds are such that the exocyclic S atom of the thiazolidinethione moiety and the endocyclic S atom of the dihydrothiazolyl ring are cis with intramolecular S...S distances 2.972 (3) and 2.971 (3) \AA, respectively, in the two independent cations.

There are six hydrogen bonds, each having a Cl atom as acceptor (Table 4, deposited). All H atoms bonded to N and O participate in the hydrogen-bonding network.

We thank Dr E. S. Raper, School of Chemical and Life Sciences, Newcastle upon Tyne Polytechnic, for helpful discussions and the Polish Academy of Sciences for financial support.

Table 3. Least-squares planes

Values are given in the following order: atoms defining the plane, equation of plane, deviations of atoms from the plane (\AA) with e.s.d.'s in parentheses.

Plane 1: $\quad S(12), N(11), C(11), C(13)$
$-0.8682 X-0.2533 Y-0.42672 Z+0.40657=0$ $\mathrm{S}(12)-0.000(2), \mathrm{N}(11)-0.002$ (5), C(11) 0.003 (6), C(13) 0.003 (7), $\mathrm{S}(12)-0.000(2), \mathrm{N}(11)-0.002(5), \mathrm{C}(11) 0.003$ (6), C(13) 0.003 (7)
$\mathrm{S}(11) 0.019(2), \mathrm{C}(12) 0.054$ (8), C(14) -0.006 (6), $\mathrm{N}(12) 0.014$ (5)
Plane 2: $\quad \mathbf{S}(13), \mathrm{C}(14), \mathrm{N}(12)$
$-0.8567 X-0.2386 Y-0.4572 Z+3.9853=0$
lane 3: $\quad \mathrm{C}(15)-0.157$ (9), $\mathrm{C}(16) 0.054$ (8), $\mathrm{N}(11)-0.023$ (5)
Plane 3: $\quad \mathbf{C}(22), \mathrm{C}(23), \mathrm{N}(21)$

$$
-0.7857 X-0.1026 Y-0.6101 Z+2.8675=0
$$

$\mathrm{S}(22)-0.024$ (2), $\mathrm{C}(21) 0.015$ (6), $\mathrm{S}(21) 0.055$ (2), $\mathrm{C}(24)-0.019$ (6)
$\mathrm{N}(22), \mathrm{C}(24), \mathrm{S}(23)$
$-0.7696 X-0.1152 Y-0.6280 Z+2.7610=0$
$\mathrm{C}(25) 0.104$ (7), $\mathrm{C}(26)-0.028$ (8), $\mathrm{N}(21) 0.007$ (5)
Interplanar angles ${ }^{\circ}$):
$1-2 \quad 2.0(5)$
$\begin{array}{ll}1-2 & 1.6(6)\end{array}$

References

Clark, A. D. \& Sykes, P. (1971). J. Chem. Soc. C, pp. 103-1 10.
Fuitta, E., Nagao, Y., Seno, K., Takao, S., Miyasaka, T., Kimura, M. \& Watson, W. H. (1981). J. Chem. Soc. Perkin Trans 1, pp. 914-919.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Kubiak, M. \& Glowiak, T. (1982). Acta Cryst. B38, 2031-2034.
Kubiak, M. \& Glowiak, T. (1985). Acta Cryst. C41, 1580-1582.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 224-239. Ithaca: Cornell Univ. Press.
Raper, E. S., Oughtred, R. E. \& Nowell, I. W. (1983). Inorg. Chim. Acta, 77, L89-L93.
Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California.

Structure of Copper Zinc Cyclohexylenediaminetetraacetate Hexahydrate

By A. Fuertes, C. Miravitlles and E. Molins
Instituto 'Jaime Almera', CSIC, c/ Martí i Franqués, s/n. Apartado 30102, 08028 Barcelona, Spain
and E. Escrivá and D. Beltrán
Departamento de Química Inorgánica, Facultad de Ciencias Quimicas, Universidad de Valencia, c/ Dr Moliner, 50, Burjasot, Valencia, Spain

(Received 23 September 1985; accepted 26 November 1985)

Abstract

Pentaaquazinc(II) [$N, N, N, N^{\prime}, N^{\prime}$-tetrakis-(carboxymethyl)- 1,2 -cyclohexanediaminato]cuprate(II) monohydrate, $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]\left[\mathrm{Cu}\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}$ $=579.3$, orthorhombic, $P b c 2_{1}, a=10.868$ (3), $b=$ 11.139 (8), $c=17.432$ (5) $\AA, V=2110$ (2) $\AA^{3}, Z=4$, $D_{x}=1.823 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $2.248 \mathrm{~mm}^{-1}, F(000)=1196$, room temperature, R $=0.030, w R=0.034$ for 1780 observed reflections

[$I>2 \sigma(I)]$. The structure is characterized by dinuclear entities in which the two metal atoms are linked through a $\mu\left(O, O^{\prime}\right)$-type carboxylate bridge. The Cu atom is bound to two N atoms and to four O atoms from the cdta ligand in a tetragonally elongated octahedral environment. The Zn atom displays nearly regular octahedral coordination being bound to five water molecules and to an O atom from the bridging
carboxylate group. The different molecules interact through hydrogen bonds between the water molecules and the O atoms from the carboxylate groups.

Introduction.
$N, N^{\prime}-1,2$-Cyclohexanediylbis [$(N$ carboxymethyl)glycine] (cdta) can form solid bimetallic carboxylate-bridged coordination compounds of stoichiometry $\quad\left[M\left(\mathrm{OH}_{2}\right)_{x}\right]\left[M^{\prime}(\mathrm{cdta})\left(\mathrm{OH}_{2}\right)_{y}\right] . z \mathrm{H}_{2} \mathrm{O}$. Recently we have proved (Fuertes, Miravitlles, Escrivá \& Beltrán, 1984; Fuertes, Miravitlles, Escrivá, Martínez-Tamayo \& Beltrán, 1985) the existence of four structural families for this system, namely: (I) $\left[\mathrm{Cu}\left(\mathrm{OH}_{2}\right)_{4}\right][\mathrm{Cu}(\mathrm{cdta})]$; (II) $\left[M\left(\mathrm{OH}_{2}\right)_{5}\right]\left[M^{\prime}(\mathrm{cdta})\right] . \mathrm{H}_{2} \mathrm{O}$ $\left[\left(M, M^{\prime}\right)=(\mathrm{Mn}, \mathrm{Cu}), \quad(\mathrm{Co}, \mathrm{Cu}), \quad(\mathrm{Ni}, \mathrm{Cu}), \quad(\mathrm{Zn}, \mathrm{Cu})\right.$, $(\mathrm{Ni}, \mathrm{Ni}),(\mathrm{Mn}, \mathrm{Ni})$ and $(\mathrm{Mn}, \mathrm{Zn})]$; (III) $\left[\mathrm{Cu}\left(\mathrm{OH}_{2}\right)_{4}\right][\mathrm{Ni}$ (cdta) $] .3 \mathrm{H}_{2} \mathrm{O}$; and (IV) $\left[M\left(\mathrm{OH}_{2}\right)_{4}\right]\left[M^{\prime}(\mathrm{cdta})\left(\mathrm{OH}_{2}\right)\right]$.$4 \mathrm{H}_{2} \mathrm{O}\left[\left(M, M^{\prime}\right)=(\mathrm{Zn}, \mathrm{Zn}),(\mathrm{Co}, \mathrm{Co}),(\mathrm{Mn}, \mathrm{Co}),(\mathrm{Zn}, \mathrm{Co})\right]$. The bridging through COO groups provides magnetic exchange pathways between the paramagnetic centers; therefore the correlated study of crystal structure and magnetic properties in these compounds is of great interest. Previously the crystal structure of $[\mathrm{Cu}-$ $\left.\left(\mathrm{OH}_{2}\right)_{4}\right][\mathrm{Cu}(\mathrm{cdta})]$ [family (I)] has been solved and reported together with a magnetic-property study (Fuertes, Miravitlles, Escrivá, Coronado \& Beltrán, 1986). In the present work we report the crystal structure of the title compound, as representative of the structural type (II).

Experimental. Suitable blue crystals were prepared by slow cooling of a water-propanone solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and the tetrasodium salt of cdta in equimolar ratio. D_{m} not determined. Crystals $0.2 \times 0.2 \times 0.5 \mathrm{~mm}$. EnrafNonius CAD-4 diffractometer with graphitemonochromated Mo $K \alpha$ radiation. Cell constants refined from 25 reflections ($5^{\circ}<\theta<18^{\circ}$). 2180 reflections ($1^{\circ}<\theta<25^{\circ}$) ($h=0$ to $12 ; k=0$ to 13; $l=0$ to 20) measured with the variable-speed $\omega-2 \theta$ technique, of which there are 50 standard reflections, 112 equivalent reflections through $-x, \frac{1}{2}+y, z$, and 109 equivalent reflections through $x, \frac{1}{2}-y, \frac{1}{2}+z ; 2 \theta_{\text {max }}$ $=50^{\circ}$. 1929 unique reflections but only 1780 with $I>2 \sigma(I)$ (from counting statistics) were used in the refinement. Variation of standard reflections $211,5 \overline{7} \overline{7}$, 222 and $114, \pm 0.91 \%$. Data corrected for Lorentzpolarization but not absorption. Structure solved by multisolution direct methods (MULTAN11/84; Main, Germain \& Woolfson, 1984), using the 230 highest E values; 12 non-H atoms found in first E map; remaining non- H atoms were located by subsequent Fourier syntheses. Full-matrix least-squares refinement with anisotropic temperature factors (SHELX76, Sheldrick, 1976). Six H atoms were located in a difference Fourier map and 12 H atoms of the ligand were placed in calculated positions. The H atoms of the six water molecules were omitted from the model. Additional
refinement with all non- H atoms treated anisotropically and fixed thermal parameters for H atoms ($U=$ $0.0668 \AA^{2}$) converged at $R=0.030, w R=0.034$, $S=1.54$ for the 1780 observed reflections and 289 variables. $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized with $w=$ $1 /\left[\sigma^{2}\left(F_{o}\right)+0.0099 F_{o}{ }^{2}\right]$ with $\sigma^{2}\left(F_{o}\right)$ from counting statistics. $(\Delta / \sigma)_{\text {max }}$ in last least-squares cycle <0.5. Max. value in final difference density map was $0.65 \mathrm{e} \AA^{-3}$ located near the Zn atom. Atomic form factors from SHELX76 (Sheldrick, 1976) and atomic scattering factors and corrections for anomalous dispersion for Zn and Cu atoms were taken from International Tables for X-ray Crystallography (1974). The geometrical calculations were performed with XANADU (Roberts \& Sheldrick, 1975) and DISTAN (Burzlaff, Böhme \& Gomm, 1977) and molecular illustrations were drawn with PLUTO (Motherwell \& Clegg, 1978).

Discussion. The atomic parameters are given in Table 1.* A perspective view of the molecule with the atomic numbering scheme is shown in Fig. 1. Table 2 gives bond distances and angles for the complex.

The two metal atoms lie on two different octahedral coordination sites. The Cu atom, occupying the 'chelated' position, is bound to two N atoms and to four O atoms from the cdta ligand. The Zn atom, which occupies the 'hydrated' position, is bound to five O atoms from water molecules and to an O atom belonging to a bridging carboxylate group. In this way, the structure is characterized by dinuclear entities in which the two metal atoms are linked through a $\mu\left(O, O^{\prime}\right)$-type carboxylate bridge.

The cdta ligand is hexadentate in the complex $[\mathrm{Cu}(\mathrm{cdta})]^{2-}$ forming five-membered chelate rings. For these we use here the classification, established by Weakliem \& Hoard (1959), into the three types E, G and R. The E ring is the ethylenediamine ring $M-\mathrm{N}-\mathrm{C}-\mathrm{C}^{\prime}-N^{\prime}-M$, the G rings are the glycine rings whose mean planes are more nearly parallel to the $N-M-\mathrm{N}^{\prime}$ plane [in this case these are $\mathrm{Cu}-\mathrm{N}(10)-$ $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(11)-\mathrm{Cu}$ and $\mathrm{Cu}-\mathrm{N}(20)-\mathrm{C}(21)-$ $\mathrm{C}(22)-\mathrm{O}(21)-\mathrm{Cu}$, and the R rings are the glycine rings whose mean planes are more nearly perpendicular to the $N-M-N^{\prime}$ plane [in the title compound these are $\mathrm{Cu}-\mathrm{N}(10)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{O}(31)-\mathrm{Cu}$ and $\mathrm{Cu}-$ $\mathrm{N}(20)-\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{O}(41)-\mathrm{Cu}$.

The six ligand atoms around the Cu^{2+} ion define a tetragonally elongated (along the $\mathrm{Cu}-\mathrm{O}_{\mathrm{R}}$ bonds) octahedron, the basal plane being formed by the two \mathbf{N} atoms and two O atoms $[\mathrm{O}(11), \mathrm{O}(21)]$ from type- G

[^0]carboxylates. So, the $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}_{G}$ bond distances $\left[\bar{d}_{\mathrm{Cu}-\mathrm{N}}=2.037\right.$ (22); $\bar{d}_{\mathrm{Cu}-\mathrm{O}_{6}}=1.991$ (17) $\left.\AA\right]$ are considered as normal when these ligands coordinate in the equatorial plane (Tomlinson, Hathaway, Billing \& Nichols, 1969; Fuertes, Miravitlles, Escrivá, Coronado \& Beltrán, 1986), while the axial $\mathrm{Cu}-\mathrm{O}_{R}$ bonds are longer and these apical ligands should be considered as weakly bonded or semi-coordinated to the Cu atom.

Table 1. Fractional coordinates $\left(\times 10^{4}, \mathrm{Zn}\right.$ and Cu $\times 10^{5}$) and equivalent isotropic temperature factors (\AA^{2}) for non-hydrogen atoms, with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	\boldsymbol{x}	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cu	-16775 (6)	5852 (6)	2040	1.9 (1)
Zn	-22459 (7)	-18673 (6)	-28260 (7)	$2 \cdot 2$ (1)
$\mathrm{N}(10)$	-1093 (5)	1251 (4)	-806 (3)	1.8 (2)
$\mathrm{N}(20)$	-3103 (5)	1803 (4)	183 (4)	$2 \cdot 2$ (2)
$\mathrm{O}(1)$	-3214 (4)	-249 (5)	-2909 (4)	3.0 (2)
$\mathrm{O}(2)$	-694 (4)	-927 (4)	-3141 (3)	2.7 (2)
$\mathrm{O}(3)$	-1094 (5)	-3443 (4)	-2864 (4)	3.2 (2)
O(4)	-3717(5)	-2950 (4)	-2556 (3)	$3 \cdot 1$ (2)
O(5)	-2770 (5)	-2211 (5)	-4023 (4)	3.4 (2)
O(6)	3629 (5)	1634 (5)	-984 (4)	3.6 (2)
O(11)	-1 (5)	-170 (4)	224 (3)	2.7 (2)
$\mathrm{O}(12)$	1901 (5)	464 (6)	-36(4)	3.5 (2)
$\mathrm{O}(21)$	-2602 (4)	-107 (4)	1073 (3)	2.5 (2)
$\mathrm{O}(22)$	-4544 (5)	-277 (5)	1469 (3)	$3 \cdot 5$ (2)
$\mathrm{O}(31)$	-2477 (6)	-864 (5)	-536 (4)	$3 \cdot 8$ (2)
$\mathrm{O}(32)$	-2029 (6)	-1623 (5)	-1669 (3)	$3 \cdot 3$ (2)
$\mathrm{O}(41)$	-839 (5)	2051 (5)	937 (3)	$3 \cdot 2$ (2)
$\mathrm{O}(42)$	-1481 (5)	3586 (4)	1645 (3)	2.7 (2)
C(10)	-1808 (6)	2409 (6)	-916 (4)	2.1 (3)
C(11)	239 (6)	1468 (6)	-668 (4)	2.4 (3)
C(12)	761 (6)	507 (6)	-125 (4)	2.3 (3)
C(20)	-3141 (6)	2212 (6)	-649 (4)	2.5 (3)
C(21)	-4151 (6)	1053 (6)	420 (4)	2.6 (3)
C(22)	-3752 (6)	163 (6)	1043 (4)	2.6 (3)
C(30)	-3939 (7)	3331 (6)	-788(5)	3.0 (3)
C(31)	-1266 (8)	327 (6)	-1418(4)	$3 \cdot 1$ (3)
C(32)	-1985 (7)	-791 (6)	-1180 (4)	2.5 (3)
C(40)	-3870 (8)	3701 (7)	-1642 (5)	$4 \cdot 1$ (3)
C(4)	-2884 (7)	2772 (7)	751 (5)	$3 \cdot 1$ (3)
C(42)	-1629 (6)	2801 (6)	1137 (4)	$2 \cdot 2$ (3)
C(50)	-2559 (8)	3988 (7)	-1853 (5)	3.6 (3)
C(60)	-1701 (8)	2890 (8)	-1735 (5)	3.4 (3)

Fig. 1. Perspective view and atomic numbering of the title compound.

This kind of distortion is a result of the Jahn-Teller effect and its extent has been parametrized by Hathaway \& Billing (1970) through the tetragonality, T (defined as the mean in-plane $\mathrm{Cu}-L$ bond length divided by the mean out-of-plane bond length, R_{S} / R_{L}), which in this case is 0.89 . This value is greater than that found in the analogous complex Cu_{2} (cdta). $4 \mathrm{H}_{2} \mathrm{O}$ ($T=0.82$) (Fuertes, Miravitlles, Escrivá, Coronado \& Beltrán, 1986), indicating a lower distortion of the $[\mathrm{Cu}(\mathrm{cdta})]^{2-}$ octahedron in the title compound.

The cdta conformation is $E, G / R$, according to the notation suggested by Porai-Koshits, Pozhidaev \& Polynova (1974). In this conformation, within the three types established for edta complexes, the methylene groups of the E and G rings in the $\mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}$ cluster lie on one side of the $N-M-N^{\prime}$ plane and the methylene

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{N}(10)-\mathrm{Cu}$ 2.	2.014 (5)	$\mathrm{C}(12)-\mathrm{O}(11) \quad 1$.	1.275 (8)
$\mathrm{N}(20)-\mathrm{Cu} \quad 2$.	2.059 (5)	$\mathrm{C}(12)-\mathrm{O}(12) \quad 1$.	1.249 (8)
$\mathrm{O}(11)-\mathrm{Cu} \quad 2$.	2.008 (5)	$\mathrm{C}(22)-\mathrm{O}(21) \quad 1$.	1.286 (8)
$\mathrm{O}(21)-\mathrm{Cu} \quad 1$.	1.974 (5)	$\mathrm{C}(22)-\mathrm{O}(22) \quad 1$.	1.239 (8)
$O(31)-\mathrm{Cu} \quad 2$.	$2 \cdot 242$ (6)	$\mathrm{C}(32)-\mathrm{O}(31) \quad 1$.	1.246 (9)
$\mathrm{O}(41)-\mathrm{Cu} \quad 2$.	$2 \cdot 265$ (5)	$\mathrm{C}(32)-\mathrm{O}(32) \quad 1$.	1.261 (9)
$\mathrm{O}(1)-\mathrm{Zn} \quad 2$.	2.092 (5)	$\mathrm{C}(42)-\mathrm{O}(41) \quad 1$.	1.248 (8)
$\mathrm{O}(2)-\mathrm{Zn} \quad 2$.	2.060 (4)	$\mathrm{C}(42)-\mathrm{O}(42) \quad 1$.	1.254 (8)
$\mathrm{O}(3)-\mathrm{Zn} \quad 2$.	2.157 (4)	$\mathrm{C}(20)-\mathrm{C}(10) \quad 1$.	1.537 (8)
$\mathrm{O}(4)-\mathrm{Zn} \quad 2$.	2.057 (5)	$\mathrm{C}(60)-\mathrm{C}(10) \quad 1$.	1.529 (10)
$\mathrm{O}(5)-\mathrm{Zn} \quad 2$.	2.197 (5)	$\mathrm{C}(12)-\mathrm{C}(11)$ I.	1.537 (9)
$\mathrm{O}(32)-\mathrm{Zn} \quad 2$.	2.048 (5)	$\mathrm{C}(30)-\mathrm{C}(20) \quad 1$.	1.537 (9)
$\mathrm{C}(10)-\mathrm{N}(10) \quad 1$.	1.518 (8)	$\mathbf{C}(22)-\mathbf{C}(21) \quad 1$.	1.533 (9)
$\mathrm{C}(11)-\mathrm{N}(10) \quad 1$.	1.487 (8)	$\mathrm{C}(40)-\mathrm{C}(30) \quad 1$.	1.546 (11)
$\mathrm{C}(31)-\mathrm{N}(10) \quad 1$.	1.494 (8)	$\mathrm{C}(32)-\mathrm{C}(31) \quad 1$.	1.528 (9)
$\mathrm{C}(20)-N(20) \quad 1$.	1.520 (9)	$\mathrm{C}(50)-\mathrm{C}(40) \quad 1$.	1.506 (12)
$\mathrm{C}(21)-\mathrm{N}(20) \quad 1$.	1.472 (8)	$\mathbf{C}(42)-C(41) \quad 1$.	1.521 (8)
$\mathrm{C}(41)-\mathrm{N}(20) \quad 1$.	1.485 (9)	$\mathrm{C}(60)-\mathrm{C}(50) \quad 1$.	1.551 (11)
$\mathrm{N}(20)-\mathrm{Cu}-\mathrm{N}(10)$	88.8 (2)	$\mathrm{C}(21)-\mathrm{N}(20)-\mathrm{Cu}$	101.8 (3)
$\mathrm{O}(11)-\mathrm{Cu}-\mathrm{N}(10)$	83.3 (2)	$\mathrm{C}(21)-\mathrm{N}(20)-\mathrm{C}(20)$	114.7 (5)
$\mathrm{O}(11)-\mathrm{Cu}-\mathrm{N}(20)$	$163 \cdot 6$ (2)	$\mathrm{C}(41)-\mathrm{N}(20)-\mathrm{Cu}$	$110 \cdot 2$ (4)
$\mathrm{O}(21)-\mathrm{Cu}-\mathrm{N}(10)$	$167 \cdot 2$ (2)	$\mathrm{C}(41)-\mathrm{N}(20)-\mathrm{C}(20)$	115.0 (5)
$\mathrm{O}(21)-\mathrm{Cu}-\mathrm{N}(20)$	83.6 (2)	$\mathrm{C}(41)-\mathrm{N}(20)-\mathrm{C}(21)$	$110 \cdot 4$ (6)
$\mathrm{O}(21)-\mathrm{Cu}-\mathrm{O}(11)$	$106 \cdot 6$ (2)	$\mathrm{C}(12)-\mathrm{O}(11)-\mathrm{Cu}$	109.5 (4)
$\mathrm{O}(31)-\mathrm{Cu}-\mathrm{N}(10)$	83.4 (2)	$\mathrm{C}(22)-\mathrm{O}(21)-\mathrm{Cu}$	111.8 (4)
$\mathrm{O}(31)-\mathrm{Cu}-\mathrm{N}(20)$	99.9 (2)	$\mathrm{C}(32)-\mathrm{O}(31)-\mathrm{Cu}$	107.8 (5)
$\mathrm{O}(31)-\mathrm{Cu}-\mathrm{O}(11)$	93.4 (2)	$\mathrm{C}(32)-\mathrm{O}(32)-\mathrm{Zn}$	$140 \cdot 2$ (5)
$\mathrm{O}(31)-\mathrm{Cu}-\mathrm{O}(21)$	87.9 (2)	$\mathrm{C}(42)-\mathrm{O}(41)-\mathrm{Cu}$	111.3 (4)
$\mathrm{O}(41)-\mathrm{Cu}-\mathrm{N}(10)$	95.8 (2)	$\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{N}(10)$	108.8 (5)
$\mathrm{O}(41)-\mathrm{Cu}-\mathrm{N}(20)$	80.7 (2)	$\mathrm{C}(60)-\mathrm{C}(10)-\mathrm{N}(10)$	112.1 (6)
$\mathrm{O}(41)-\mathrm{Cu}-\mathrm{O}(11)$	85.8 (2)	$\mathrm{C}(60)-\mathrm{C}(10)-\mathrm{C}(20)$	113.9 (6)
$\mathrm{O}(41)-\mathrm{Cu}-\mathrm{O}(21)$	93.1 (2)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(10)$	$110 \cdot 2$ (5)
$\mathrm{O}(41)-\mathrm{Cu}-\mathrm{O}(31)$	178.9 (2)	$\mathrm{O}(12)-\mathrm{C}(12)-\mathrm{O}(11)$	$124 \cdot 1$ (6)
$\mathrm{O}(2)-\mathrm{Zn}-\mathrm{O}$ (1)	87.4 (2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(11)$	117.8 (5)
$\mathrm{O}(3)-\mathrm{Zn}-\mathrm{O}(1)$	172.2 (2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(12)$	118.0 (6)
$\mathrm{O}(3)-\mathrm{Zn}-\mathrm{O}$ (2)	86.0 (2)	$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{N}(20)$	$107 \cdot 8$ (5)
$\mathrm{O}(4)-\mathrm{Zn}-\mathrm{O}(1)$	97.5 (2)	$\mathrm{C}(30)-\mathrm{C}(20)-\mathrm{N}(20)$	114.2 (6)
$\mathrm{O}(4)-\mathrm{Zn}-\mathrm{O}(2)$	174.5 (2)	$\mathrm{C}(30)-\mathrm{C}(20)-\mathrm{C}(10)$	111.6 (5)
$\mathrm{O}(4)-\mathrm{Zn}-\mathrm{O}(3)$	88.9 (2)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(20)$	$110 \cdot 3$ (5)
$\mathrm{O}(5)-\mathrm{Zn}-\mathrm{O}(1)$	87.4 (2)	$\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{O}(21)$	123.9 (6)
$\mathrm{O}(5)-\mathrm{Zn}-\mathrm{O}(2)$	92.7 (2)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(21)$	117.1 (5)
$\mathrm{O}(5)-\mathrm{Zn}-\mathrm{O}(3)$	88.8 (2)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(22)$	119.0 (6)
$\mathrm{O}(5)-\mathrm{Zn}-\mathrm{O}(4)$	85.1 (2)	$\mathrm{C}(40)-\mathrm{C}(30)-\mathrm{C}(20)$	109.9 (6)
$\mathrm{O}(32)-\mathrm{Zn}-\mathrm{O}(1)$	90.7 (2)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{N}(10)$	115.6 (6)
$\mathrm{O}(32)-\mathrm{Zn}-\mathrm{O}(2)$	95.8 (2)	$\mathrm{O}(32)-\mathrm{C}(32)-\mathrm{O}(31)$	123.1 (7)
$\mathrm{O}(32)-\mathrm{Zn}-\mathrm{O}(3)$	94.1 (2)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{O}(31)$	121.2 (6)
$\mathrm{O}(32)-\mathrm{Zn}-\mathrm{O}(4)$	86.7 (2)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{O}(32)$	115.8 (6)
$\mathrm{O}(32)-\mathrm{Zn}-\mathrm{O}(5)$	171.2 (2)	$\mathrm{C}(50)-\mathrm{C}(40)-\mathrm{C}(30)$	109.7 (6)
$\mathrm{C}(10)-\mathrm{N}(10)-\mathrm{Cu}$	$105 \cdot 2$ (4)	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{N}(20)$	117.1 (6)
$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{Cu}$	103.0 (4)	$\mathrm{O}(42)-\mathrm{C}(42)-\mathrm{O}(41)$	$125 \cdot 2$ (6)
$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{C}(10)$) 112.4 (5)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{O}(41)$	118.6 (6)
$\mathrm{C}(31)-\mathrm{N}(10)-\mathrm{Cu}$	109.3 (4)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{O}(42)$	116.2 (6)
$\mathrm{C}(31)-\mathrm{N}(10)-\mathrm{C}(10)$) 115.5 (5)	C(60)-C(50)-C(40)	111.7 (6)
$\mathrm{C}(31)-\mathrm{N}(10)-\mathrm{C}(11)$) $110.5(5)$	$\mathrm{C}(50)-\mathrm{C}(60)-\mathrm{C}(10)$	110.7 (7)

group of the R ring lies on the other. The other two types are called $E, R / G$ (with the CH_{2} groups of the E and R rings separated through the $N-M-N^{\prime}$ plane from that of the G ring) and trans- E (or centrosymmetric trans structure for edta). The $E, G / R$ conformation is characteristic of the octahedral complexes containing the hexadentate cdta ligand, and it is also present in Cu_{2} (cdta). $4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CuNi}(\mathrm{cdta}) \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (Fuertes, Miravitlles, Escrivá, Martinez-Tamayo \& Beltrán, 1985). The cyclohexane ring is in the chair form, and its conformation is defined by the planes $A[\mathrm{C}(20), \mathrm{C}(30), \mathrm{C}(50), \mathrm{C}(60)], \quad B[\mathrm{C}(30), \mathrm{C}(40), \mathrm{C}(50)]$ and $C[C(10), C(20), C(60)]$. The angles between the $A-B$ and $A-C$ planes are, respectively, 54.3 (7) and 45.7 (7) ${ }^{\circ}$.

The carboxylate groups are, in general, asymmetric. The interplay between the bond lengths and angles in them does not obey the first relationship described by Borthwick (1980), probably due to the perturbations produced by the metal- O bonds and hydrogen bonds. However, it follows fairly well the remaining $R 2, R 3$ and $R 4$ relationships. The formulae of the four relations are: $R 1, \varphi_{1}-\varphi_{2}=-100\left(r_{1}-r_{2}\right) ; R 2,1 / r_{i}=0.65 \times$ $\sin \varphi_{j}+0.22 \quad(i \neq j ; i, j \in\{1,2\}) ; R 3, \varphi_{i}=243-100 r_{i}$ ($i \in\{1,2\}$) and $R 4, r_{1} r_{2} \cos (\alpha / 2) \simeq 0 \cdot 73$, where φ_{i} and α are the $\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angles $\left(^{\circ}\right)$, respectively, and r_{i} is the $\mathrm{C}-\mathrm{O}$ distance (\AA).

The COO_{G} groups show the greatest differences between the two $\mathrm{C}-\mathrm{O}$ bond distances, having $d_{\mathrm{C}-\mathrm{Oj1}}>$ $d_{\mathrm{C}-\mathrm{oj} 2}$. The $\mathrm{COO}_{\mathrm{R}}$ groups are more symmetrical and show the inverse relation $d_{\mathrm{C}-\mathrm{oj} 1}<d_{\mathrm{c}-\mathrm{oj} 2}$ owing to the weaker interaction of Oj 1 with the Cu^{2+} ion. This result has also been found in the Cu_{2} (cdta). $4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MnCu}\left(\right.$ edta). $6 \mathrm{H}_{2} \mathrm{O}$ complexes (Solans, Font-Altaba, Oliva \& Herrera, 1983).

The structural function of the bridging carboxylate is, after the terminology established by Porai-Koshits (1980), intermediate between $a-2-s$ and $a-2-a$ (nearer to $a-2-a)$, as can be seen from the torsion angles $\mathrm{Cu}-\mathrm{O}(31)-\mathrm{C}(32)-\mathrm{O}(32)=164.0(6)^{\circ}$ and $\mathrm{O}(31)-$ $\mathrm{C}(32)-\mathrm{O}(32)-\mathrm{Zn}=139.8$ (7) ${ }^{\circ}$.

The strain in the individual chelate rings has been analyzed in terms of the deviation (t) of the sum of the angles on each ring from the idealized values proposed by Weakliem \& Hoard (1959) for an E ring (527.9°) and a glycinate ring (538.9 ${ }^{\circ}$).

The t values for the title compound have been compared with those for related complexes in a previous work (Fuertes, Miravitlles, Escrivá, Coronado \& Beltran, 1986). The strains of the E and G rings are similar $\left[t_{E}=-13.7(9)^{\circ}, \bar{t}_{G}=-14.7(9)^{\circ}\right]$. However, the G rings are more strained than the R ones $\left[\bar{t}_{R}=-1 \cdot 3(10)^{\circ}\right]$. This result is general in ecita and edta-like complexes and arises from the cumulative bond-angle strains in forming a G ring.

The coordination polyhedron of the Zn atom is a slightly distorted octahedron, with normal $\mathrm{Zn}-\mathrm{O}$
distances for this type of environment (Constable, 1984). The six water molecules are involved in hydrogen bonds with the O atoms from carboxylate groups and with symmetry-related water molecules (Table 3), assuring the intermolecular packing (Fig. 2).
The strongest hydrogen bonds are formed by the uncoordinated and weakly Cu -bonded O atoms from carboxylate groups $[O(22), O(41), O(42)]$. This result is normal and also explains the similar bond distances $\mathrm{C}(42)-\mathrm{O}(41)$ and $\mathrm{C}(42)-\mathrm{O}(42)$.

Table 3. Hydrogen-bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$A-B$		$B-A-C$	
$\mathrm{O}(1)-\mathrm{O}\left(22^{\prime}\right)$	2.730 (5)	$\mathrm{Zn}-\mathrm{O}(1)-\mathrm{O}\left(22^{\text {i }}\right.$)	131.4 (3)
$\mathrm{O}(1)-\mathrm{O}\left(42^{\prime \prime}\right)$	2.754 (6)	$\mathrm{Zn}-\mathrm{O}(1)-\mathrm{O}\left(42^{\text {i' }}\right.$)	104.8 (3)
		$\mathrm{O}\left(22^{\prime}\right)-\mathrm{O}(1)-\mathrm{O}\left(42^{\text {ii) }}\right.$)	110.8 (4)
$\mathrm{O}(2)-\mathrm{O}\left(41^{\text {II }}\right.$)	2.632 (5)	$\mathrm{Zn}-\mathrm{O}(2)-\mathrm{O}\left(41^{\text {iii }}\right.$)	116.1 (3)
$\mathrm{O}(2)-\mathrm{O}\left(42^{\prime \prime}\right)$	2.770 (5)	$\mathrm{Zn}-\mathrm{O}(2)-\mathrm{O}\left(42^{\text {i }}\right.$)	$105 \cdot 2$ (3)
		$\mathrm{O}\left(41^{\text {III }}\right.$)-O(2)-O(42 ${ }^{\text {III }}$)	124.1 (4)
$\mathrm{O}(3)-\mathrm{O}\left(21^{\text {lv }}\right.$)	2.955 (5)	$\mathrm{Zn}-\mathrm{O}(3)-\mathrm{O}\left(2 \mathrm{I}^{\text {iv }}\right.$)	98.2 (3)
$\mathrm{O}(3)-\mathrm{O}\left(42^{\text {III }}\right.$)	2.930 (5)	$\mathrm{Zn}-\mathrm{O}(3)-\mathrm{O}\left(42^{\text {iI }}\right.$)	127.4 (3)
		$\mathrm{O}\left(21^{\text {iV) }}\right.$ - $-\mathrm{O}(3)-\mathrm{O}\left(42^{\text {iii }}\right.$)	108.5 (4)
$\mathrm{O}(4)-\mathrm{O}\left(6^{\text {V }}\right.$)	2.780 (5)	$\mathrm{Zn}-\mathrm{O}(4)-\mathrm{O}\left(6^{4}\right)$	107.3 (3)
$\mathrm{O}(4)-\mathrm{O}\left(22^{\text {lV }}\right.$)	2.756 (5)	$\mathrm{Zn}-\mathrm{O}(4)-\mathrm{O}\left(22^{\text {iv }}\right.$)	122.2 (3)
		$\mathrm{O}\left(6^{\text {V }}\right.$)-O(4)-O(22 ${ }^{\text {iv }}$)	120.0 (4)
$\mathrm{O}(5)-\mathrm{O}\left(12^{\text {iil }}\right.$)	2.792 (5)	$\mathrm{Zn}-\mathrm{O}(5)-\mathrm{O}\left(12^{\text {lii) }}\right.$)	113.0 (3)
$\mathrm{O}(5)-\mathrm{O}\left(2 \mathrm{I}^{\text {iv }}\right.$)	2.998 (5)	$\mathrm{Zn}-\mathrm{O}(5)-\mathrm{O}\left(21^{\text {iv }}\right.$)	96.0 (3)
		$\mathrm{O}\left(12^{\text {iii }}\right)-\mathrm{O}(5)-\mathrm{O}\left(21^{\text {iv }}\right.$)	135.2 (4)
$\mathrm{O}(6)-\mathrm{O}(12)$	2.822 (5)	$\mathrm{O}(12)-\mathrm{O}(6)-\mathrm{O}\left(4^{\text {i }}\right.$)	132.6 (4)
$\mathrm{O}(6)-\mathrm{O}\left(4^{\text {VI }}\right.$)	2.780 (5)	$\mathrm{O}(12)-\mathrm{O}(6)-\mathrm{O}\left(32^{\text {vi }}\right)$	98.8 (4)
$\mathrm{O}(6)-\mathrm{O}\left(32^{\text {v }}\right.$)	2.867 (5)		

Symmetry code: (i) $-1-x,-y,-\frac{1}{2}+z$; (ii) $x, \frac{1}{2}-y,-\frac{1}{2}+z$; (iii) $-x,-y$, $-\frac{1}{2}+z$; (iv) $x,-\frac{1}{2}-y,-\frac{1}{2}+z$; (v) $-x,-\frac{1}{2}+y, z$; (vi) $-x, \frac{1}{2}+y, z$.

Fig. 2. A view of the unit-cell contents, viewed approximately along the [010] direction. Hydrogen bonds are indicated by dashed lines.

The authors wish to thank the CAICYT (grant No. 2930|83) and the CSIC for financial support and a predoctoral fellowship for AF.

References

Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.
Burzlaff, J., Böhme, V. \& Gomm, M. (1977). DISTAN. Univ. of Erlängen, Federal Republic of Germany.
Constable, E. C. (1984). Coord. Chem. Rev. 58, 1-51.
Fuertes, A., Miravitlles, C., Escrivá, E. \& Beltrán, D. (1984). Acta Cryst. A40, C-104.

Fuertes, A., Miravitlles, C., Escrivá, E., Coronado, E. \& Beltrán, D. (1986). J. Chem. Soc. Dalton Trans. In the press.
Fuertes, A., Miravitlles, C., Escrivá, E., Martínez-Tamayo, E. \& Beltrán, D. (1985). Transition Met. Chem. In the press.

Hathaway, B. J. \& Billing, D. E. (1970). Coord. Chem. Rev. 5, 143-207.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Germain, G. \& Woolfson, M. M. (1984). MULTAN11/84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Poral-Koshits, M. A. (1980). Zh. Strukt. Khim. 21, 146-180.
Porai-Koshits, M. A., Pozhidaev, A. I. \& Polynova, T. N. (1974). Zh. Strukt. Khim. 15, 1117-1126.

Roberts, P. \& Sheldrick, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Solans, X., Font-Altaba, M., Oliva, J. \& Herrera, J. (1983). Acta Cryst. C39, 435-438.
Tomlinson, A. A. G., Hathaway, B. J., Billing, D. E. \& Nichols, P. (1969). J. Chem. Soc. A, pp. 65-71.
Weakliem, H. A. \& Hoard, J. L. (1959). J. Am. Chem. Soc. 81, 549-555.

Structure of an Orthorhombic Form of 2,2'-Biphenylenemercury

By N. A. A. Al-Jabar, J. Bowen Jones, D. S. Brown and A. G. Massey
Department of Chemistry, Loughborough University of Technology, Loughborough LE 11 3TU, England

(Received 14 March 1985; accepted 3 December 1985)

Abstract

Tris}\left(\mu\right.\)-2,2' ${ }^{\prime}$-biphenylene))trimercury, $\left[\mathrm{Hg}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8}\right)_{3}\right], M_{r}=1058 \cdot 3$, orthorhombic, Pbca, $\quad a=26.857$ (16), $\quad b=11.458$ (6), $\quad c=$ 19.110 (44) $\AA, U=5880 \AA^{3}, Z=8, D_{m}=2 \cdot 398, D_{x}$ $=2.391 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $153.44 \mathrm{~cm}^{-1}, F(000)=3840, T=293 \mathrm{~K}, R=0.053$ for 1898 reflexions with $I>3 \sigma(I)$. The biphenylenemercury molecule is trimeric, $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Hg}\right)_{3}$, and chiral. The Hg atoms form a triangle with $\mathrm{Hg} \cdots \mathrm{Hg}$ contacts in the range 3.461 (1) to 3.637 (2) \AA, slightly greater than accepted van der Waals distances. The $\mathrm{C}-\mathrm{Hg}-\mathrm{C}$ angles are 176.3 (9)-178.9 (8) ${ }^{\circ}$.

Introduction. When Wittig first prepared 2,2'-biphenylenemercury he assumed it was a simple monomer (Wittig \& Herwig, 1954) but later quoted ebullioscopic evidence to prove its tetrameric nature (Wittig \& Lehmann, 1957). However, mass spectral analysis (Awad, Brown, Cohen, Humphries \& Massey, 1977; Al-Jabar \& Massey, 1984) and an X-ray study of triclinic crystals (Stender, Hinrichs, Kopf \& Klar, 1981) showed some samples of the molecule to be trimeric. As both the trimeric and tetrameric species
appear equally feasible we have searched for evidence of a tetramer. We found that the bulk of our biphenylenemercury samples separates from a variety of solvents as orthorhombic crystals which take on a surprising array of physical shapes from apparent cubes and truncated rods to perfectly formed hexagons. Again, even in this new crystal form biphenylenemercury is trimeric; so far we have been unable to obtain any evidence for a tetrameric species although the perfluorinated analogue has been detected mass spectroscopically (Al-Jabar \& Massey, 1984).

Experimental. Preparation by the method of Neugebauer, Kos \& Schleyer (1982); colourless crystals grown from toluene; D_{m} by flotation in hexane-dibromomethane; crystal $(0.38 \times 0.13 \times$ 0.08 mm) mounted about \mathbf{c}; Stoe Weissenberg diffractometer, $\sin \theta / \lambda<0.6 \AA^{-1}$, lattice parameters from maximizing fit of axial row reflexions; 5123 reflexions measured, 1898 with $I>3 \sigma(I) ; h 0-34, k 0-14, l 0-15$; standard check reflexions on each layer, no significant changes; absorption corrections applied, $t_{\text {min }} 0 \cdot 25, t_{\text {max }}$ 0.33 ; Hg positions found by direct methods and C
© 1986 International Union of Crystallography

[^0]: * Lists of H -atom coordinates, anisotropic thermal parameters, the equations of the least-squares planes, and structure factor amplitudes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42682 (14 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

